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Propagation of finite length laser pulses in plasma channels

P. Sprangle, B. Hafizi,* and P. Serafim†

Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375
~Received 23 September 1998!

Finite pulse length effects are shown to play a major role in the propagation, stability, and guiding of intense
laser beams in plasmas. We present the quasiparaxial approximation~QPA! to the wave equation that takes
finite pulse length effects into account. The QPA is an extension of the usual paraxial approximation. The laser
field is shown to be significantly modified for pulses less than a few tens of wavelengths long. A pair of
coupled envelope-power equations having finite pulse length effects, as well as relativistic and atomic electron
nonlinearities, is derived and analyzed. Short laser pulses propagating in plasma channels are found to undergo
an envelope oscillation in which the front of the pulse is always damped while the back initially grows. The
modulation eventually damps due to frequency spread phase mixing. In addition, finite pulse length effects are
shown to modify nonlinear focusing processes significantly.@S1063-651X~99!13003-4#

PACS number~s!: 41.75.Lx, 41.20.Jb, 42.65.Re
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I. INTRODUCTION

Advances in laser technology have resulted in a new c
of compact, ultrashort, pulse lasers with extremely high
tensities@1–3#. Intense pulses have numerous potential
plications in areas such as advanced laser-driven acceler
@4–14#, harmonic generators@15–19#, x-ray lasers@20,21#,
other short wavelength radiation sources@22#, and ‘‘fast ig-
nitor’’ laser fusion@23–25#. Laser technology is now bein
pushed to such extremely short pulse lengths that the pul
only a few optical cycles in duration. For example, at
wavelength of 0.8mm, Barty @2# produced pulses of 4-TW
peak power with durations of 18 fs~;7 wavelengths! with
plans to extend these results to;10 fs and.100 TW. In this
regime, finite pulse length effects may play an important r
in the laser pulse propagation dynamics.

The propagation dynamics of long laser pulses~long com-
pared to the wavelength! is described by the well-known
paraxial wave equation. In the paraxial wave equation
proximation, lowest order diffraction effects associated w
the laser beam are retained, but finite pulse length and hi
order diffraction effects are neglected. The solutions to
paraxial wave equation in vacuum are the well-known L
guerre Gaussian functions that describe the dynamics of
laser beams@26#. When the laser pulse length becomes s
ficiently short, i.e., less than;10’s of wavelengths, finite
pulse length effects can play an important role@27#. An ex-
ample of this is the propagation of short laser pulses i
guiding channel. Extended laser pulse propagation in
plasma channel@28–40# is important in a number of appli
cations, including high gradient accelerators and x-ray las

In this paper a quasiparaxial approximation~QPA! is in-
troduced which is an extension of the well-known parax
approximation to the wave equation to include finite pu
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length effects. Employing the QPA, a pair of couple
envelope-power equations is derived for short laser pu
propagating in vacuum, plasma, and channels. The mo
includes atomic electron and relativistic effects. The resu
contained in this paper include~i! an analytical formulation
of short laser pulses using the QPA,~ii ! a derivation of a pair
of coupled laser envelope-power equations,~iii ! a laser en-
velope modulation which eventually damps due to freque
spread phase mixing,~iv! a demonstration of significan
modification of nonlinear processes due to finite pulse len
effects, and~v! an analysis of short pulse propagation d
namics in long plasma channels. These results represent
tures and effects associated with short pulse lasers. S
laser pulse effects have been considered numerically o
one dimension by others@41–44#; however, the major find-
ings in this paper were not addressed. For example, du
finite pulse length effects, the trailing edge of an unmatch
laser pulse propagating in a plasma channel is found to
dergo an envelope oscillation, while the leading edge
damped. For a sufficiently short pulse the modulation w
modify the main body of the pulse. The laser envelo
modulation is shown to be due to the dependence of
pulse group velocity on the spot size through the pu
length. In addition, finite pulse length effects are shown
increase nonlinear focusing processes significantly.

The organization of this paper is as follows. The gene
wave equation for the electric field of a finite length las
pulse propagating in vacuum, plasmas, or channels, inc
ing nonlinear ~atomic and relativistic! focusing effects, is
presented and discussed in Sec. II. In Sec. III the propaga
dynamics of a short pulse in vacuum or uniform plasma
derived. In Sec. IV a general pair of coupled envelope-pow
equation is derived. These equations are used to analyz
propagation of a short laser pulse in a performed plas
channel with nonlinear focusing effects. Various propagat
limits are discussed, and the laser envelope modulatio
analyzed. The laser envelope modulation is discussed in
V. Numerical illustrations are presented in Sec. VI, and
conclusion is given in Sec. VII. In the Appendix the range
validity of the QPA is obtained in two limiting cases.
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II. FINITE PULSE LENGTH MODEL

The propagation medium is a vacuum, plasma, or p
formed plasma channel consisting of free and bound e
trons, i.e., partially stripped plasma. Nonlinear proces
arising from relativistic and atomic polarization effects a
included. The wave equation includes a plasma current c
sisting of free electrons and a polarization current aris
from the bound atomic electrons, and is given by@31,45,46#,

S ¹'
2 1

]2

]z2 2 c22
]2

]t2DE54pc22S ]Jp

]t
1

]2P

]t2 D , ~1!

where¹'
2 is the transverse Laplacian,E(r ,t) is the electric

field, Jp is the plasma current density associated with the f
electrons, andP is the polarization field associated with th
bound electrons. The atomic polarization field consists
linear and nonlinear partsP5(1/4p)(h0

22112h0h2I )E,
whereh0 is the linear index,h2 is the nonlinear refractive
index, andI 5(c/4p)h0 ^E–E& is the time averaged lase
intensity. In the present model, the origin of the nonline
index h2 is the anharmonic potential in which the boun
electrons oscillate. Noting that]Jp /]t5(4p)21vp

2(r )E and
settingh051, the wave equation becomes

S ¹'
2 1

]2

]z2 2
1

c2

]2

]t2 2
vp

2~r !

c2 1b^E–E& DE50, ~2!

where vp(r )5@4pq2np(r )/m#1/2 is the plasma frequenc
andnp(r ) is the plasma density. In Eq.~2! the coefficient of
the nonlinear termb5bp1ba denotes relativistic free elec
tron effects as well as nonlinear atomic electron effects a
ing from h2 ,

bp5
1

2 S q

mc2D 2S vp0

v D 2

, ~3a!

ba5
c

2p

v2

c2 h2 , ~3b!

wherevp05(4pq2np0 /m)1/2, np0 is the density on axis (r
50), andv is the characteristic laser frequency. In Eq.~3!,
bp results in a critical power for relativistic focusing@31,47–
50#, while theba results in a critical power for atomic elec
tron focusing @31,51–53#. In a partially stripped plasma
atomic effects can occur on a time scale;10215sec, and can
dominate free electron effects in the nonlinear te
@32,45,46#. The nonlinear term, due to relativistic free ele
trons, is only significant when the laser pulse length is lon
than a plasma period@54#. The critical powers for relativistic
focusing in plasma and nonlinear focusing in a gas are

Pp52c~q/r e!
2~v/vp!2, ~4a!

and

Pa5l2/~2ph2!, ~4b!

respectively, wherer e is the classical electron radius. In ge
eral, when the laser power exceeds either of these cri
-
c-
s

n-
g

e

f

r

s-

r

al

powers, focusing occurs@31,45,46#. The total nonlinear fo-
cusing power consists of contributions from bothPp andPa
and is given by

Pc5PpPa /~Pp1Pa!. ~4c!

The preformed plasma density channel is taken to b
function of radial position in order to provide for guiding o
the laser pulse. The radial dependence of the plasma
quency is given by

vp~r !5vp0S 11
Dn

np0

r 2

r c
2D 1/2

, ~5!

wherenp01Dn is the density at the edge of the plasma cha
nel (r 5r c). For guiding, the plasma density must increase
a function ofr, i.e., Dn.0.

Laser induced plasma waves and wakefields@55,56#, are
neglected. This can be justified if the laser pulse length
less than a plasma period or if the laser intensity is su
ciently low.

A. Quasiparaxial approximation „QPA… to wave equation

The laser electric field is of the form

E5E0 exp@ i ~kz2vt !#/21c.c., ~6!

whereE0(r ,t) is the complex amplitude,k is the wave num-
ber andv is the frequency. Substituting Eqs.~5! and~6! into
Eq. ~2! gives the wave equation forE0 ,

F¹'
2 12i S k

]

]z
1

v

c2

]

]t D1
]2

]z2 2
1

c2

]2

]t2 2Kc
2 r 2

r c
2

1bE0–E0* /2GE050, ~7!

where Kc5(vp0 /c)(Dn/np0)1/2 is the focusing paramete
associated with the plasma channel and we have sek
5(v2/c22vp0

2 /c2)1/2. Changing variables from~z,t! to
(z,j) wherej5z2hpct, and settingk5hpv/c, wherehp

5(12vp0
2 /v2)1/2 is the linear on-axis plasma refractive in

dex, Eq.~7! becomes

F¹'
2 12ihp

v

c

]

]z
12

]2

]z]j
1~12hp

2!
]2

]j2 1
]2

]z2 2 Kc
2 r 2

r c
2

1bE0–E0* /2GE050. ~8!

The second term on the left-hand side of Eq.~8! represents
first order diffraction effects, the third term denotes first o
der finite pulse effects, the fourth and fifth terms deno
higher order finite pulse and diffraction effects, respective
and the last two terms represent guiding and nonlinear foc
ing, respectively.

In the absence of a channel guiding (Kc50) and nonlin-
ear focusing (b50), we can obtain an estimate for the ord
of magnitude of the various terms in Eq.~8!. The second,
third, fourth, and fifth terms in Eq.~8! are approximately of
order
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2hp~v/c!u]/]zu;
4

r 0
2 , ~9a!

2U ]2

]z]jU;S 1

php

l

l 0
D 4

r 0
2 , ~9b!

~12hp
2!U ]2

]j2U;S r 0

2l

vp

v D 2S l

l 0
D 2 4

r 0
2 , ~9c!

U ]2

]z2U;S l

2phpr 0
D 2 4

r 0
2 , ~9d!

respectively, wherer 0 and l 0 are the spot size and puls
length. In obtaining the estimates in Eq.~9! we usedu]/]ju
;1/l 0 and u]/]zu;1/ZR , whereZR5phpr 0

2/l is the Ray-
leigh length in the plasma, andl is the vacuum wavelength
The relative order of magnitudes of the first, second, th
fourth and fifth terms in Eq.~8! is

1:1:
1

php

l

l 0
:
12hp

2

4php

ZR

l 0

l

l 0
:

1

4php

l

ZR
. ~10!

The first two terms in the wave equation are comparable
lead to the paraxial wave equation approximation. In
paraxial approximation finite length effects and higher or
diffraction are neglected, i.e., the third, fourth, and fif
terms in Eq.~8! are neglected. The paraxial wave equati
assumes thatl/ l 0!1, (12hp

2)(ZR / l 0)l/ l 0!1, and l/ZR

!1, and is given by

S ¹'
2 12ihp

v

c

]

]zDE050. ~11!

Solutions of the paraxial wave equation are the well-kno
Laguerre Gaussian functions@26#.
ion
al
,

d
e
r

n

When the Rayleigh length is large compared to the pu
length,ZR@ l 0 , the higher order diffraction term can be n
glected compared to the finite pulse length terms, resultin
the following wave equation:

F¹'
2 12ihp

v

c S 12
i

hp

c

v

]

]j D ]

]z
1~12hp

2!
]2

]j2GE050.

~12!

Equation~12! contains first order diffraction and finite puls
length effects, and reduces to the paraxial equation@Eq.
~11!#, when the pulse length is much longer than the wa
length, l 0@l.

B. Finite pulse length wave equation

Finite pulse length effects are represented by the te
]2/]z]j and ]2/]j2 in Eq. ~12!. These terms under certai
conditions can be simplified using the QPA, allowing for t
analytical solution for the field. To analyze finite puls
length effects we assume that the general solution of Eq.~12!
for the fundamental transverse Gaussian complex amplit
is given by

E05b exp@ iw2~11 iu!r 2/r s
2#ê' , ~13!

whereb, w, u andr s are real functions ofz, j5z2hpct, and
ê' is a unit transverse vector defining the polarization. In E
~13!, b is the amplitude,w is the phase,u is related to the
wave front curvature, andr s is the spot size of the lase
pulse. The central assumption in the QPA is that the m
contribution from the finite length term will come from thej
dependence in the initial amplitude. Hence we make the
proximations ]E0 /]j>@] ln(b0)/]j#E0 and ]2E0 /]j2

>$]2 ln(b0)/]j21@] ln(b0)]j#2%E0 , whereb0(j)5b(z50,j).
In the Appendix the QPA will be shown to be well satisfie
for a broad range of parameters. Employing the QPA@Eq.
~12!#, including the guiding term and relativistic and atom
electron nonlinearities, becomes
F¹'
2 12ihp

v

c
@11 i«~j!#

]

]z
2

v2

c2 hp
2~12hp

2!g~j!2Kc
2r 2/r c

21bE0–E0* /2GE050, ~14a!
ity

s

where

«~j!5
2c

vhp

] ln@b0~j!#

]j
~14b!

and

g~j!5
c

vhp

]«

]j
2«2. ~14c!

Finite pulse length effects are represented by the funct
«~j! and g(j). If the laser pulse amplitude has an initi
Gaussian longitudinal profile;exp(24j2 /l0

2), we find that

«~j!5
8c

vhp

j

l 0
2 5

4

php

lj

l 0
2 ~15a!
s

and

g~j!52S l

phpl 0
D 2S 12

8j2

l 0
2 D . ~15b!

The functions« andg have magnitudes much less than un
in the vicinity of the laser pulse, i.e.,uju& l 0 . To estimate the
order of magnitude for« and g, we takel51 mm and l 0
515mm ~50-fs pulse! and obtain«(j5 l 0)5831022 and
g(j5 l 0)52631023.

The quasiparaxial wave equation@Eq. ~14a!# indicates that
finite pulse length effects can be important whenl 0
,(l/r 0)2L, whereL is the propagation length. This implie
that finite pulse length effects are significant whenL@ZR ,
as would be the case for a guided laser pulse.
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The laser field, which is described by Eq.~13!, depends
on the functionsb, w, u, andr s . To obtain equations forb, w,
u, andr s , we substitute Eq.~13! into the wave equation@Eq.
~14a!#, containing finite pulse length effects, plasma chan
guiding, and nonlinear focusing. Equating like powers or
leads to coupled equations forb, w, u, andr s @57#:

Q1 i ~11 i«!
]

]Z F1

2
ln~P/R2!1 iw G1P/~2R2!2a50,

~16a!

Q21 i ~11 i«!
]

]Z
Q2Rm

242
P

R4 50, ~16b!

whereQ(Z,j)52(11 iu)/R2, R5r s /r 0 is the normalized
spot size, r 0 is the initial spot size,Rm5r m /r 0 , r m

5(2r c /Kc)
1/2, a(j)5(ZR /r 0)2(12hp

2)g(j), ZR5hpvr 0
2/

2c5hppr 0
2/l is the Rayleigh length,Z5z/ZR , P(Z,j)
fo

to
ls
l

5PL(Z,j)/Pc is the laser power normalized to the nonline

focusing power, PL(Z,j)5Ppeak(b/b̂0)2R2 is the laser

power, b̂0 is the peak amplitude atZ50,Ppeak is the peak
laser power atZ50 andPc is the nonlinear focusing powe
in Eq. ~4c! which can be due to both relativistic and atom
electron effects.

III. SHORT PULSE PROPAGATION IN VACUUM
OR UNIFORM PLASMA

A. Fundamental transverse Gaussian pulse solution

In this section we obtain and discuss the finite pu
length solution to Eq.~14a! by solving Eqs.~16a! and~16b!
in the absence of guiding (Rm→`) and nonlinear focusing
effects (Pc→`). The solution of Eq.~16! in a uniform me-
dium, with refractive indexhp , is
b~Z,j!5b0~j!R21~Z,j!S 11«2~j!

11«~j!@Z1«~j!#
D 1/2

expS 2
«~j!a~j!

11«2~j!
ZD , ~17a!

w~Z,j!52tan21@Z1«~j!#1tan21@«~j!#2
a~j!

11«2~j!
Z, ~17b!

u~Z,j!5
2Z

$11«~j!@Z1«~j!#%
, ~17c!

R~Z,j!5S 11@Z1«~j!#2

11«~j!@Z1«~j!# D
1/2

, ~17d!
in
is

ite

e
ith
loc-

n

lse
t-

nd

ts
and the wave front radius of curvature is

Rc~Z,j!5R2ZR /u~Z,j!5~ZR /Z!$11@Z1«~Z,j!#2%.
~17e!

In the paraxial limit,«(j)→0, the functionsb, w, u, R, and
Rc in Eqs. ~17! reduce to the conventional expressions
the fundamental transverse Gaussian beam@26#:

b~Z!5b0 /R~Z!, ~18a!

w~Z!52tan21 Z, ~18b!

u~Z!52Z, ~18c!

R~Z!5~11Z2!1/2, ~18d!

Rc~Z!5~ZR /Z!~11Z2!. ~18e!

For propagation in vacuum we sethp51 in Eqs.~17! and
~18!.

B. Group velocity

To correctly obtain the group velocity, it is necessary
use the quasiparaxial wave equation in which finite pu
r

e

length effects are included. The paraxial wave equation
Eq. ~11! does not contain finite pulse length effects; it
valid for infinitely long beams. Since Eq.~11! is independent
of the variablej, which describes the pulse shape, fin
pulse length effects can be included in anad hocmanner by
simply multiplying the paraxial solution by an arbitrary puls
envelope. In general, the group velocity is the velocity w
which the peak of the pulse envelope travels, i.e., the ve
ity for which ]b(Z,j)/]j50. In the paraxial approximation
the group velocity is found to beng5chp5c(ck/v), where
we have taken the pulse amplitude to beb0(j)5b̂0 exp
(24j2/l0

2) andb̂0 is the peak amplitude. In this approximatio
the product of the group and phase velocities isc2.

In the quasiparaxial approximation, which includes pu
length effects, from Eq.~17a! the pulse envelope can be wri
ten as

b~Z,j!5b0~j!@12«~j!Z/~11Z2!#, ~19!

whereb0 is the amplitude in the paraxial approximation a
the term proportional to« is the QPA correction due to finite
pulse length effects. Equation~19! is correct to order« and is
valid for «Z!1. In the presence of finite pulse length effec
the group velocity is found to be
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ng~ t !'chpF12
1

2 S l

phpr 0
D 2 ~12c2t2/ZR

2 !

~11c2t2/ZR
2 !2G→chpF12

1

2 S l

phpr 0
D 2G , ~20!
es
se

ite
in

ite
er
q
he
a
n

tio

ts
an
e
sin

on

s-
w

po

-

in

tes.

he

ay-
di-

e

d
on-

m.
an-
where the second expression is valid forct!ZR . In obtain-
ing Eq. ~20! we evaluated]b/]j50 in Eq. ~19! and setZ
'ct/ZR and j5*0

t dt8ng(t8)2chpt. When finite pulse
length effects are properly included, as in the QPA, to low
order in « the group velocity is independent of the pul
length but depends on the spot size as given in Eq.~20!.

IV. COUPLED ENVELOPE-POWER EQUATIONS

In this section we analyze the propagation of a fin
length laser pulse in a preformed plasma channel includ
nonlinear focusing effects. In general, for propagation in
plasma channel there is no equilibrium solution for a fin
length high power laser pulse. For a sufficiently low pow
where nonlinear focusing effects can be neglected, an e
librium solution for finite length pulses exists. However, t
equilibrium undergoes an envelope modulation. The norm
ized envelope equation for a laser pulse in a plasma chan
to first order in«~j!, is obtained from Eqs.~14a! and ~14b!,

]2R/]Z22~12P!R231Rm
24R1«F~Z,j!50, ~21a!

where

P5P0~j!expF2«E
0

Z

G~Z8,j!dZ8G ~21b!

is the normalized power,

F~Z,j!5R22@31~R/Rm!42P1~R]R/]Z!2#]R/]Z,
~21c!

G~Z,j!5R22@11~R/Rm!41~R]R/]Z!2#, ~21d!

andR5r s /r 0 , Z5z/ZR . In obtaining Eqs.~21!, higher order
finite length effects contained ina, which are of order«2,
have been neglected. The coupled envelope-power equa
for the guided pulse given by Eqs.~21! are nonlinear func-
tions of spot size, and contain finite pulse length effec
Several limiting cases, depending on the laser power
pulse duration, will be discussed. In the following, low las
power refers to powers much less than the nonlinear focu
power,PL!Pc .

A. Low power, long pulse„P!1,«50…

In the low power, long pulse limit, the envelope equati
reduces to

]2R

]Z2 1Rm
24R2R2350. ~22!

The second term in Eq.~22! denotes plasma channel focu
ing, while the last term represents diffraction. In this lo
power, long pulse limit, the beam has an equilibrium s
sizeReq5Rm .
t

g
a

,
ui-

l-
el,

ns

.
d

r
g

t

B. Low power, short pulse„P!1,«Þ0…

In the low power, short pulse limit the equilibrium solu
tion to Eqs.~16! is

Req5Rm , ~23a!

beq~Z,j!5b0~j!expb2«Z/Rm
2 c, ~23b!

ueq50, ~23c!

weq~Z!52
Z

~11«2!Rm
2 , ~23d!

while the equilibrium power is given by

Peq5P0 exp@2«weq~Z!#, ~23e!

and the pulse group velocity is given by the expression
Eq. ~20!. The effect of finite pulse length («Þ0) is to make
the peak of the pulse shift backward as the pulse propaga

C. High power, long pulse„P&1,«50…

In this limit, the equilibrium is given by

Req~j!5Rm@12Peq~j!#1/4, ~24a!

ueq50, ~24b!

weq~j,Z!52~12Peq/2!Z/Req
2 , ~24c!

where Peq5P0(j)5(Ppeak/Pc)@b0(j)/b̂0#2 is the initial
normalized laser power as a function ofj. In this limit the
laser power does not evolve with distance, i.e.,Peq5P0(j)
is independent ofZ. For peak laser powers less than t
critical power,P0(j),1, the equilibrium is stable.

In this limit for a uniform plasma~no channel guiding,
Rm5`), a uniform laser beam i.e., independent ofj, will
have a longer Rayleigh length longer than the vacuum R
leigh length because of nonlinear focusing effects. The mo
fied Rayleigh length is given by

ZR5~12Peq!
21/2ZR0 , ~25!

providedPeq,1. ForPeq.1, the beam focuses in a distanc

L f5~Peq21!21/2ZR0 . ~26!

In Eqs.~25! and ~26!, ZR0 is the Rayleigh length associate
with low power lasers, i.e., powers much less than the n
linear focusing power (Peq!1).

D. High power, short pulse„P&1,«50…

In this limit, the laser pulse does not have an equilibriu
The stability characteristics of laser pulses in plasma ch
nels can be obtained by perturbing Eq.~21! about the spot
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size Req(j)5Rm@12P0(j)#1/4, where R5Req1dR and
udRu!Req. The equation fordR is

]2dR/]Z214R0
24~12P0!dR

14«R0
22~12P0/2!]dR/]Z52R0

23dP, ~27a!

where

dP5P0S expF2«S G0Z1E
0

Z

dG dZ8D G21D , ~27b!

G052R0
21(12P0/2) anddG522R0

23P0dR. Since there is
no equilibrium for high power, short pulses propagating in
plasma channel, both the laser power and spot size ev
with propagation distance. The spatial evolution of the pow
and spot size, among other factors, is given by exp@22«(1
2P0/2)Z/R0#.

V. LASER ENVELOPE MODULATION

A. Envelope oscillation

In the low power (P!1), short pulse limit@Sec. IV B#,
the perturbed envelope equation is

]2dR

]Z2 14dR14«
]dR

]Z
26

c

v

]2dR

]j]Z
50, ~28a!

with solution

dR'dR0 exp~22«Z2Z2/Zd
2!cos~2Z!, ~28b!

where dR05dR(Z50), ]dR/]Z50 at Z50, and Zd

5v0 /(2A6c) is the phase mixing length normalized toZR .
The damping term is obtained from an extension of the Q
to include phase mixing. In obtaining the solution in E
~28b! it was assumed that the envelope periodpZR is small
compared to the growth lengthZR /(2u«u) and the phase mix
ing length (p/61/2)( l 0 /l)ZR . The modulation amplitude is
proportional to

exp@28ljZ/~phpl 0
2!2Z2/Zd

2#. ~29!

The modulation at the front of the pulse (j.0) is always
damped, while in the back (j,0) it initially grows but is
eventually damped due to frequency spread phase mix
Overall damping of the modulation occurs forZ
.4puju/3hpl.

B. Laser modulation mechanism

The mechanism for the envelope modulation can be
derstood by noting the relationships between the group
locity, spot size, and power of a pulse propagating in
plasma channel. The group velocity of a pulse in a plas
channel can be written asvg5vg01dvg , where the mean
group velocityvg0 is given by Eq.~20!, the perturbed group
velocity is dvg5c(l/pr 0)2dr /r 0 , and dr is the perturbed
spot size. To lowest order, conservation of power impl
db52b0dr /r 0 , wheredb andb0 are the perturbed and un
perturbed laser field amplitudes, respectively. Figures 1~a!
a
ve
r

A
.

g.

-
e-
a
a

s

and 1~b! show the amplitude and spot size of a finite pu
length laser in a reference frame moving with the me
group velocityvg0 . The solid curve shows the equilibrium
amplitude and spot size as a function ofz2vg0t. If the spot
size is uniformly increased (dr .0) along the pulse, the
group velocity increases by the amountdvg . The amplitude
in front of the unperturbed pulse increases (db.0), while
the amplitude in back of the unperturbed pulse decrea
(db,0). Conservation of power indicates that the perturb
spot size in back of the pulse is further increased sincedr
52r 0db/b0.0, and decreased in front of the pulse sin
dr 52r 0db/b0,0. If, instead, initially the spot size wer
uniformly decreased, the spot size at the back would be
ther decreased while in the front it would increase. Hence
perturbed spot size is damped in front of the pulse and
unstable in the back. Substitutingj5z2vgt5z2vg0t
2dvgt5j02dvgt into b;b0 exp(24j2/l0

2), the rate of
change of the perturbed amplitude is]db/]t
'8b0j0dng / l 0

2. Using dr 52(r 0 /b0)db, we find ]dr /]t
528cj0(l/pr 0)2dr / l 0

2, which agrees with the growth term
in Eq. ~29!. Inherent to a finite laser pulse is a frequen
spread given bydv;c/ l 0 . Hence the envelope modulatio
frequency Ve52c/ZR acquires a spreaddVe;Vedv/v
;Ve(l/2p l 0). This envelope frequency spread results
phase mixing of the modulation in a distanceZd ~normalized
to ZR).

FIG. 1. Illustration of the physical mechanism for the laser e
velope modulation. The amplitude is shown in~a! and the spot size
in ~b!, as a function ofj05z2vg0t, wherevg0 is the mean group
velocity. The solid curves correspond to the equilibrium. T
dashed curves show the amplitude and spot size for the case w
group velocity larger thanvg0 ~1!, and for the case with a group
velocity smaller thanvg0 ~2!.
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VI. NUMERICAL ILLUSTRATIONS

The small phase mixing effect due to the frequen
spread associated with the short pulse is neglected in
following numerical results. Figure 2 is a plot of the norma
ized spot sizeR(Z,j) in Eq. ~17d! as a function ofj for
various values ofZ50, 1, 2, and 3. In this figure the lase
pulse propagates in vacuum and the pulse length isl 056l.
In the absence of finite length effects the spot size would
independent ofj. Figure 2 indicates that the tail of the puls
flares out more than the front of the pulse, leading to
‘‘trumpet’’ pulse shape.

FIG. 2. Plot of normalized spot sizeR(Z,j) as a function ofj
for a pulse of lengthl 056l propagating in free space. The fou
curves correspond to normalized axial pointsZ50 ~lowest curve!,
1, 2, and 3.

FIG. 3. Surface plots of spot sizeR as a function ofj/l and
propagation distanceZ5z/ZR with ~a! finite pulse length effects
(«Þ0) and ~b! finite pulse length effects neglected («50). The
parameters arel51 mm, l 0520mm, andPpeak50.56Pc .
y
he

e

a

In Figs. 3–6 the laser pulse parameters arel51 mm, and
vp /v!1 l 0520mm ~67 fs! and the peak power isPpeak
50.56Pc . The total nonlinear focusing powerPc is given by
Eq. ~4c!, and consists of contributions from free and atom
electrons. In all the figures there is an initial mismatch in t
spot size compared to the equilibrium spot size, i.e.,R0
5R(0,0)51 andRm51.15. Figure 3~a! shows the spot size
R(Z,j) as a function ofZ5z/ZR and j/l, with finite pulse

FIG. 4. Plot of spot sizeR as a function ofj/l after a propaga-
tion distance equal to 15 Rayleigh lengths (Z515). The solid~dot-
ted! curve includes~neglects! finite pulse length effects. Paramete
are the same as in Fig. 3.

FIG. 5. Surface plots of laser pulse amplitudeb as a function of
j/l and propagation distanceZ5z/ZR with ~a! finite pulse length
effects («Þ0) and ~b! finite pulse length effects neglected («
50). Parameters are the same as in Fig. 3.
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length effects («Þ0) included. For comparison, Fig. 3~b!
shows the same plot except in the absence of finite len
effects («50). The laser envelope modulation is clear
seen in Fig. 3~a!, where the spot size oscillations at the fro
of the pulse (j.0) are damped and in the back (j,0)
grow. Finite pulse effects not only result in an envelo
modulation but also significantly enhance nonlinear foc
ing. This is shown in Fig. 4, where the spot size with fin
pulse length effects~solid curve! approaches zero atj/l
523 for Z515. The spot size without finite length effec
~dotted curve! shows less than a 10% decrease atj'0 for
Z515. Figures 5~a! and 5~b! show the laser pulse amplitud
b(Z,j) as a function ofZ and j/l with and without finite
pulse length effects, respectively. As a result of the enhan
nonlinear focusing due to the finite pulse length, Fig. 5~a!
shows a significant increase in the pulse amplitude aZ
515 compared to Fig. 5~b!. Figure 6 shows the pulse powe
as a function ofj/l and radial coordinater /r 0 at Z515.
Finite length effects in Fig. 6~a! result in an increase in th
peak power as well as a distortion of the pulse compare
Fig. 6~b!, where finite length effects are absent. In Fig. 6~a!,
finite length effects reduce the pulse propagation veloc
i.e., the peak of the pulse occurs at negative values ofj. In
Fig. 6~b!, nonlinear focusing effects are included while fini
pulse length effects are neglected,«50. For«50 the pulse
velocity isc, and nonlinear focusing is substantially reduce

FIG. 6. Surface plots of laser pulse powerP as a function ofj/l
and radial coordinater /r 0 after a propagation distance equal to
Rayleigh lengths (Z515). In ~a!, finite pulse length effects are
included, and show enhanced focusing and decreased propag
velocity, i.e., the peak of the pulse occurs for negative values oj.
In ~b!, finite pulse length effects are neglected, i.e.,«50, while
nonlinear focusing effects are included. Parameters are the sam
in Fig. 3.
th

t
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VII. CONCLUSIONS

The increasing use of ultrashort laser pulses in many
plications requires that the paraxial wave equation be
tended to include finite pulse length effects. We present
quasiparaxial approximation~QPA! to the wave equation
The QPA is an extension of the usual paraxial approxim
tion, and takes finite pulse length effects into account. A p
of coupled envelope-power equations is derived for short
ser pulses propagating in vacuum, plasmas, and prefor
plasma channels. The model includes atomic electron
relativistic effects. We find that finite length effects can s
nificantly modify the laser field. The results include~i! an
analytical formulation of short laser pulses,~ii ! a derivation
of a pair of coupled laser envelope-power equations,~iii ! a
laser envelope modulation,~iv! a demonstration of signifi-
cant modification of nonlinear processes by finite pu
length effects, and~v! an analysis of short pulse propagatio
dynamics in long plasma channels.
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APPENDIX: VALIDITY OF THE QUASIPARAXIAL
APPROXIMATION

The approximation, which leads to the simplified wa
equation in Eq.~14a!, requires that

u«E0u@US «1
c

hpv

]

]j DE0U, ~A1!

whereE0 and« are given by Eqs.~13! and~14b!. The short
pulse approximation requires that Eq.~A1! be satisfied.

1. Approximation in vacuum

For pulse propagation in vacuum,hp51, the inequality in
Eq. ~A1! can be rewritten, and the approximation is shown
be valid if

uju@
l

2p U Z

11 i ~Z1«!
UU11

~r /r 0!2

11 i ~Z1«!
U, ~A2!

where we have assumedu«u!1. The finite pulse length ap
proximation in vacuum, used to replace]E0 /]j with
2(v/c)«(j)E0 in Eq. ~14a!, is well satisfied everywhere
except within a small function of a wavelength of the pulse
center.

tion

as
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2. Approximation in guiding channel

To determine the validity of the short pulse approximati
in a guiding channel we consider the low power, short pu
limit of Eq. ~21!, i.e., limit ~b! in Sec. IV. The field in Eq.
~13! for the equilibrium solution given in Eqs.~23! is

Eeq5b0~j!exp@2«Z/Rm
2 2 ir 2/~r 0Rm!2#. ~A3!

SubstitutingEeq for E0 in Eq. ~A1! yields the condition for
the QPA to be valid. The approximation is valid provided
ns

l.

un

ys
e,

.
i-
T
,

.

.

.
n

R

P.
las

nd

. P

s.

iu
e

u«u@(c/vhp)u]«/]juZ/Rm
2 , which for a pulse having a

Gaussian longitudinal profile is

uju@
1

hp

l

2p
Rm

22Z. ~A4!

The QPA approximation is not valid for long propagatio
distances.
J.
n,
l,

.
J.

.

H.

c.

.
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