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Propagation of finite length laser pulses in plasma channels
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Finite pulse length effects are shown to play a major role in the propagation, stability, and guiding of intense
laser beams in plasmas. We present the quasiparaxial approxin/@®¥ to the wave equation that takes
finite pulse length effects into account. The QPA is an extension of the usual paraxial approximation. The laser
field is shown to be significantly modified for pulses less than a few tens of wavelengths long. A pair of
coupled envelope-power equations having finite pulse length effects, as well as relativistic and atomic electron
nonlinearities, is derived and analyzed. Short laser pulses propagating in plasma channels are found to undergo
an envelope oscillation in which the front of the pulse is always damped while the back initially grows. The
modulation eventually damps due to frequency spread phase mixing. In addition, finite pulse length effects are
shown to modify nonlinear focusing processes significafL.063-651X%99)13003-4

PACS numbgs): 41.75.Lx, 41.20.Jb, 42.65.Re

I. INTRODUCTION length effects. Employing the QPA, a pair of coupled
envelope-power equations is derived for short laser pulses
Advances in laser technology have resulted in a new claggropagating in vacuum, plasma, and channels. The model
of compact, ultrashort, pulse lasers with extremely high inincludes atomic electron and relativistic effects. The results
tensities[1-3]. Intense pulses have numerous potential apcontained in this paper includé an analytical formulation
plications in areas such as advanced laser-driven acceleratafshort laser pulses using the QRA) a derivation of a pair
[4—14], harmonic generatorgl5-19, x-ray laserq20,21], of coupled laser envelope-power equatiofiis) a laser en-
other short wavelength radiation sour¢@g], and “fast ig-  velope modulation which eventually damps due to frequency
nitor” laser fusion[23—25. Laser technology is now being spread phase mixingiv) a demonstration of significant
pushed to such extremely short pulse lengths that the pulse isodification of nonlinear processes due to finite pulse length
only a few optical cycles in duration. For example, at aeffects, and(v) an analysis of short pulse propagation dy-
wavelength of 0.8um, Barty[2] produced pulses of 4-TW namics in long plasma channels. These results represent fea-
peak power with durations of 18 fs-7 wavelengthswith  tures and effects associated with short pulse lasers. Short
plans to extend these results+d0 fs and>100 TW. In this  laser pulse effects have been considered numerically or in
regime, finite pulse length effects may play an important roleone dimension by othefgl1-44; however, the major find-
in the laser pulse propagation dynamics. ings in this paper were not addressed. For example, due to
The propagation dynamics of long laser puldesg com- finite pulse length effects, the trailing edge of an unmatched
pared to the wavelengthis described by the well-known laser pulse propagating in a plasma channel is found to un-
paraxial wave equation. In the paraxial wave equation apeergo an envelope oscillation, while the leading edge is
proximation, lowest order diffraction effects associated withdamped. For a sufficiently short pulse the modulation will
the laser beam are retained, but finite pulse length and highenodify the main body of the pulse. The laser envelope
order diffraction effects are neglected. The solutions to thenodulation is shown to be due to the dependence of the
paraxial wave equation in vacuum are the well-known La-pulse group velocity on the spot size through the pulse
guerre Gaussian functions that describe the dynamics of lonigngth. In addition, finite pulse length effects are shown to
laser beam$26]. When the laser pulse length becomes suf-increase nonlinear focusing processes significantly.
ficiently short, i.e., less thar-10's of wavelengths, finite The organization of this paper is as follows. The general
pulse length effects can play an important ri2&]. An ex-  wave equation for the electric field of a finite length laser
ample of this is the propagation of short laser pulses in gulse propagating in vacuum, plasmas, or channels, includ-
guiding channel. Extended laser pulse propagation in @ng nonlinear(atomic and relativistic focusing effects, is
plasma channdl28—4Q is important in a number of appli- presented and discussed in Sec. Il. In Sec. Ill the propagation
cations, including high gradient accelerators and x-ray laserslynamics of a short pulse in vacuum or uniform plasma is
In this paper a quasiparaxial approximati@PA) is in-  derived. In Sec. IV a general pair of coupled envelope-power
troduced which is an extension of the well-known paraxialequation is derived. These equations are used to analyze the
approximation to the wave equation to include finite pulsepropagation of a short laser pulse in a performed plasma
channel with nonlinear focusing effects. Various propagation
limits are discussed, and the laser envelope modulation is
*Present address: Icarus Research, Inc., P.O. Box 30780, Banalyzed. The laser envelope modulation is discussed in Sec.

thesda, MD 20824-0780. V. Numerical illustrations are presented in Sec. VI, and a
"Present address: Northeastern University, Dept. of Electrical Eneonclusion is given in Sec. VII. In the Appendix the range of
gineering, Boston, MA 02115. validity of the QPA is obtained in two limiting cases.
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Il. FINITE PULSE LENGTH MODEL powers, focusing occurs31,45,484. The total nonlinear fo-
. . . cusing power consists of contributions from béth and P,
The propagation medium is a vacuum, plasma, or pre- ~ .2
. and is given by

formed plasma channel consisting of free and bound elec-
trons, i.e., partially stripped plasma. Nonlinear processes Pe=P,Pa/(Pp+Py). (40)
arising from relativistic and atomic polarization effects are
included. The wave equation includes a plasma current con- The preformed plasma density channel is taken to be a
sisting of free electrons and a polarization current arisingunction of radial position in order to provide for guiding of
from the bound atomic electrons, and is given[BY,45,46,  the laser pulse. The radial dependence of the plasma fre-

quency is given by

V2 B P K L 1
_ = N /.
A Lt b e T - An r?) 12
wp(N)=wpo| 1+ =] 5
po I'c

Wherer is the transverse Laplaciak(r,t) is the electric

field, J, is the plasma current density associated with the freavhereny+An is the density at the edge of the plasma chan-
electrons, andP is the polarization field associated with the nel (r=r.). For guiding, the plasma density must increase as
bound electrons. The atomic polarization field consists of function ofr, i.e., An>0.

linear and nonlinear part®=(1/4w) (73— 1+277,l)E, Laser induced plasma waves and wakefi¢kis,56], are
where 7, is the linear index,;, is the nonlinear refractive Nneglected. This can be justified if the laser pulse length is
index, andl = (c/4w)7,(E-E) is the time averaged laser less than a plasma period or if the laser intensity is suffi-
intensity. In the present model, the origin of the nonlinearciently low.

index 7, is the anharmonic potential in which the bound

electrons oscillate. Noting thatl,/dt=(4m) *wj(r)E and A. Quasiparaxial approximation (QPA) to wave equation
setting7o=1, the wave equation becomes The laser electric field is of the form
# 1P win) E=Eoexdi(kz—wt)]/2+c.c., (6)
Vit—- g~ tBEE|E=0, (2 oexili( )

whereEq(r,t) is the complex amplitude is the wave num-
ber andw is the frequency. Substituting Eq$) and(6) into

h =[47qny(r)/m]¥2 is the pl f
where wo(r) =[4mgn,(r)/m] “is the plasma frequency Eq. (2) gives the wave equation fd,,

andnp(r) is the plasma density. In E¢) the coefficient of
the nonlinear ternB= B,+ B, denotes relativistic free elec-
tron effects as well as nonlinear atomic electron effects aris-
ing from 7,,

# 1 r

w J K 2
J’_ —_— —
97> c? a2 Ter?

kﬁ+
dz  c? ot

V2+2i

1( q )2(@)2 39 + BEy-E4/2|E=0, @

Po=3\ma
where K= (wp/C)(An/ny) Y2 is the focusing parameter
_C o 3b) associated with the plasma channel and we havekset
Ba= 2 72 ( =(w?/c®~wiy/c?)M. Changing variables fromz,) to
(z,€) where {=z— n,ct, and settingk= 7,w/c, where 7,
where wpo= (479’ /M) nyg is the density on axisr( = (1—why/w?)¥2is the linear on-axis plasma refractive in-
=0), andw is the characteristic laser frequency. In E8), dex, Eq.(7) becomes
B, results in a critical power for relativistic focusing1,47—
50], while the 8, results in a critical power for atomic elec- 2 .. @ 2 2
tron focusing[31,51-53. In a partially stripped plasma, | VLT 27 57 +2T¢9§ (1= 7p) 222 Kerz
atomic effects can occur on a time scalé0™ °sec, and can ¢
dominate free electron effects in the nonlinear term
[32,45,48. The nonlinear term, due to relativistic free elec-
trons, is only significant when the laser pulse length is longer
than a plasma peridd4]. The critical powers for relativistic The second term on the left-hand side of E8). represents
focusing in plasma and nonlinear focusing in a gas are  first order diffraction effects, the third term denotes first or-
der finite pulse effects, the fourth and fifth terms denote

32 #? 9P r2

+ BEy-EXI2|Eg=0. (8)

Po=2c(a/r)X(wlwp)?, (48  higher order finite pulse and diffraction effects, respectively,
and the last two terms represent guiding and nonlinear focus-
and ing, respectively.
In the absence of a channel guiding.&0) and nonlin-
P.=\2(277,), (4b)  ear focusing B=0), we can obtain an estimate for the order

of magnitude of the various terms in E@). The second,
respectively, where, is the classical electron radius. In gen- third, fourth, and fifth terms in Eq:8) are approximately of
eral, when the laser power exceeds either of these criticairder
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4 When the Rayleigh length is large compared to the pulse
2mp(wle)|aloz)~ 3, (980  length,Zg>1,, the higher order diffraction term can be ne-
0 glected compared to the finite pulse length terms, resulting in
P ( 1 A\ 4 o the following wave equation:
— | i 2
9zo€| \mn, o1’ 2 o1 @1 CO) I 29
\%n 2|77pc 1 7o @ 9E) 72 (1= mp) PP Ey=0.
K ro wp\?(N\24 (12)
A=m)7z ~\ox o | \i7] 72 (99 _ L S -
€ @ o/ To Equation(12) contains first order diffraction and finite pulse
5 5 length effects, and reduces to the paraxial equafigq.
7| A i 99 (11)], when the pulse length is much longer than the wave-
9z° 2wl ry’ length, >\
respectively, where, and |, are the spot size and pulse B. Finite pulse length wave equation
length. In obtaining the estimates in E§) we used d/9¢| Finite pulse length effects are represented by the terms

~1Ny and |9/dz|~1/Zg, whereZg=mn,ry/\ is the Ray-  #%/9za¢ and 32192 in Eq. (12). These terms under certain
leigh length in the plasma, andis the vacuum wavelength. conditions can be simplified using the QPA, allowing for the
The relative order of magnitudes of the first, second, thirdanalytical solution for the field. To analyze finite pulse

fourth and fifth terms in Eq(8) is length effects we assume that the general solution of E}.
for the fundamental transverse Gaussian complex amplitude
1 N 1-93ZgN 1 X is given by
1:1: : : (10)

mplo 4mnp lo lo” 47y Zg Eo=bexdio—(1+i6)r2r2e, , (13)
The first two terms in the wave equation are comparable an%hereb, ¢, 6 andr are real functions of, £&=z— pct, and
lead to the paraxial wave equation approximation. In theéL is a unit transverse vector defining the polarization. In Eq.
paraxial approximation finite length effects and higher order(13), b is the amplitude is the phaseg is related to the
diffraction are neglected, i.e., the third, fourth, and fifth wave front curvature, and, is the spot size of the laser
terms in Eq.(8) are neglected. The paraxial wave equationpyjse. The central assumption in the QPA is that the main
assumes that/lo<1, (1- 75)(Zr/l))Mlo<1, and M/Zz  contribution from the finite length term will come from tie
<1, and is given by dependence in the initial amplitude. Hence we make the ap-
proximations JEq/dé=[dIn(by)/dE]JE, and J*Eqla&?
={92 In(bo)/9&%+[ 3 In(bg) 91 Eq, whereby(£)=b(z=0,£).

In the Appendix the QPA will be shown to be well satisfied
for a broad range of parameters. Employing the QIE4.
Solutions of the paraxial wave equation are the well-known(12)], including the guiding term and relativistic and atomic

. w d
V2 +2i Moo 5) Eo=0. (11

Laguerre Gaussian function26]. electron nonlinearities, becomes
|
2.0 @ : J W’ 2 2 2,272 *
Vi 2y [L+is()] 55— o7 (1 mf)g(é) ~ Kar?Irg+ BEo-E5 /2| Eo=0, (149
|
where and
—c dIn[by(¢)]
a(§)=—m] BT (14b) g(g)zz( )2(1_8_52) (15
P T7pl0 |(2) '
and
c de The functionse andg have magnitudes much less than unity
9(&)=— =~ &2, (140  inthe vicinity of the laser pulse, i.g£|<I,. To estimate the
@7p I8 order of magnitude foe and g, we takex=1 um andl,

— _ i )= -2
Finite pulse length effects are represented by the functions, és_"f n)w_(5_06fi f(l){lsge and obtaine (§=1o)=8x10"" and
=lg)= )

e(é¢) and g(¢). If the laser pulse amplitude has an initial 9 : : . -
. - . B N2 . The quasiparaxial wave equatiffeq. (1438 ] indicates that
Gaussian longitudinal profile-exp(—4&/15), we find that finite pulse length effects can be important whéa
8c ¢ 4 \g <(M\/ro)%L, whereL is the propagation length. This implies
e(f)=— 3=— — (159 that finite pulse length effects are significant when Z,
wnplo ™7 1o as would be the case for a guided laser pulse.
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The laser field, which is described by Ed.3), depends
on the functiond, ¢, 6, andrg. To obtain equations fdy, ¢,
6, andr ¢, we substitute Eq(13) into the wave equatiofEq.

(143)], containing finite pulse length effects, plasma channer
guiding, and nonlinear focusing. Equating like powersrof .

leads to coupled equations fbr ¢, 6, andrg [57]:

+P/(2R?) — a=0,
(163

1
5 In( P/IR?) +i¢

Q+i(l~l—is,‘)(9iZ

P
=2=0,

Q2+i(1+is)iQ—R—4—
iz m R

(16b
where Q(Z,£)=—(1+i6)/R?, R=r/rq is the normalized
spot size, ry is the initial spot size,Rn,=rn/rg, I'm
=(2rc/KQ)™ a(§)=(Zrlro) (1= 75)9(8), Zg=mporyl
2c=n,mrg/\ is the Rayleigh lengthZ=2/Zg, P(Z,£)
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=P (Z,&)/P. is the laser power normalized to the nonlinear
focusing power, P (Z,&) =P ea(b/Dg)?R? is the laser
ower, BO is the peak amplitude & =0, Py is the peak
aser power aZz=0 andP, is the nonlinear focusing power

in Eq. (4c) which can be due to both relativistic and atomic
electron effects.

[ll. SHORT PULSE PROPAGATION IN VACUUM
OR UNIFORM PLASMA

A. Fundamental transverse Gaussian pulse solution

In this section we obtain and discuss the finite pulse
length solution to Eq(149 by solving Egs(16a and(16h)
in the absence of guidingR,— ) and nonlinear focusing
effects P.— ). The solution of Eq(16) in a uniform me-
dium, with refractive indexy,, is

1+82(8) )1’2 p( e(&)a(é) )
b(Z,£)=by(£)R™1(Z, -7, 17
=Dy R 26| T | e - T (173

_ ~1 ~1 a(é)
o(Z.£)=—tam [Z+e(&)]+tan {e(8)]- 11,252 a7b
0(Z,8)= —Z 17
@O Tz e o1 (7o
1+[Z+e(6)]? \Y?

R&O= Tstarzreel) (rd

and the wave front radius of curvature is

Ru(Z,6)=R?Za/0(Z,8) = (ZIZ){1+[Z+&(Z,6)12).
(179
In the paraxial limit,e (£)— 0, the functions, ¢, 6, R, and

R. in Egs. (17) reduce to the conventional expressions for
the fundamental transverse Gaussian b2

b(Z)=by/R(Z), (183
p(2)=—tan 1z, (18b)
0(2)=-2, (189
R(Z)=(1+2%"?, (18d)
R(Z)=(Zr!Z)(1+Z?). (18¢

For propagation in vacuum we se},=1 in Egs.(17) and
(19).

B. Group velocity
To correctly obtain the group velocity, it is necessary to

length effects are included. The paraxial wave equation in
Eqg. (11 does not contain finite pulse length effects; it is
valid for infinitely long beams. Since E¢l1) is independent

of the variable¢, which describes the pulse shape, finite
pulse length effects can be included inathhocmanner by
simply multiplying the paraxial solution by an arbitrary pulse
envelope. In general, the group velocity is the velocity with
which the peak of the pulse envelope travels, i.e., the veloc-
ity for which db(Z,£)/9€=0. In the paraxial approximation
the group velocity is found to be,=c»,=c(ck/w), where

we have taken the pulse amplitude to bg(&)=b,exp
(—452/IS) andE)O is the peak amplitude. In this approximation
the product of the group and phase velocities3s

In the quasiparaxial approximation, which includes pulse
length effects, from Eq.173 the pulse envelope can be writ-
ten as

b(Z,&)=bo(&)[1-e(6)Z/(1+27)], (19

whereby is the amplitude in the paraxial approximation and
the term proportional te is the QPA correction due to finite
pulse length effects. Equati@h9) is correct to ordee and is
valid for eZ< 1. In the presence of finite pulse length effects

use the quasiparaxial wave equation in which finite pulsehe group velocity is found to be
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L 1/ N \2(1-c?¥z3) L 1/ N \? -
vo(t)~Cpp 2 TNl o (1-i-C2'[2/ZZR)2 —Cp 2 TNl o ’ (20

where the second expression is valid édr<Zg. In obtain-
ing Eq. (20) we evaluatedib/9£=0 in Eq. (19) and setZ
~ct/Zg and &= [ydt’ vy(t’)—cypt. When finite pulse
length effects are properly included, as in the QPA, to lowes

B. Low power, short pulse(P<1,e#0)

In the low power, short pulse limit the equilibrium solu-
tion to Eqs.(16) is
t

order in g the group velocity is independent of the pulse Reg=Rm, (239
length but depends on the spot size as given in(EQ.
be(Z,€) =bo(£)exp — e Z/RE), (23b
IV. COUPLED ENVELOPE-POWER EQUATIONS
. . . . Oeq=0, (239
In this section we analyze the propagation of a finite

length laser pulse in a preformed plasma channel including
nonlinear focusing effects. In general, for propagation in a Ped Z)=— (11 :9R2’ (230
plasma channel there is no equilibrium solution for a finite m
length high power laser pulse. For a sufficiently low power,hile the equilibrium power is given by
where nonlinear focusing effects can be neglected, an equi-
librium solution for finite length pulses exists. However, the Peq=Poexd 2eped 2)1, (23¢

equilibrium undergoes an envelope modulation. The normal- o o
ized envelope equation for a laser pulse in a plasma channeind the pulse group velocity is given by the expression in

to first order ine(¢), is obtained from Eqs.143@ and(14b),
#®RI9Z°—(1-P)R 3+ R *R+eF(Z,£)=0, (213

where

P=Po(g)ex;{—sfoze(z',g)dz'} (21b)

is the normalized power,

F(Z,6)=R 93+ (R/Ry)*—P+(RIRI9Z)?]oR/IZ,
(219

(21d

andR=r/ry, Z=2z/Zg. In obtaining Eqs(21), higher order
finite length effects contained in, which are of order?,
have been neglected. The coupled envelope-power equatio
for the guided pulse given by Eq&1) are nonlinear func-
tions of spot size, and contain finite pulse length effects
Several limiting cases, depending on the laser power an
pulse duration, will be discussed. In the following, low laser
power refers to powers much less than the nonlinear focusin
power, P <P,.

G(Z,6)=R 1+ (R/IRy)*+(RIRI3Z)?],

A. Low power, long pulse(P<1,e=0)

In the low power, long pulse limit, the envelope equation
reduces to

2

IR 4 -3
ﬁ—i_Rm R—R :O. (22)

The second term in Eq22) denotes plasma channel focus-
ing, while the last term represents diffraction. In this low

Eq. (20). The effect of finite pulse lengthe@ 0) is to make
the peak of the pulse shift backward as the pulse propagates.

C. High power, long pulse(P=<1,£=0)
In this limit, the equilibrium is given by

Red £) =Rl 1= Ped £)1", (243
Beq=0, (24b)
ed £,2)=—(1— Pe2) ZIRE, (249

where Pg,= Po(g)=(Ppeak/PC)[bo(g)/f)o]2 is the initial
normalized laser power as a function &fln this limit the
laser power does not evolve with distance, iR.,=Pq($)

is independent oZ. For peak laser powers less than the
critical power,Pq(£)<1, the equilibrium is stable.

SIn this limit for a uniform plasmano channel guiding,
E&m= ©), a uniform laser beam i.e., independent&ifwill
have a longer Rayleigh length longer than the vacuum Ray-

igh length because of nonlinear focusing effects. The modi-
led Rayleigh length is given by
9

Zp=(1-Peg) Y2Zgy, (25)

providedP,<1. ForP.>1, the beam focuses in a distance
Li=(Peg— 1) "?Zpo. (26)

In Egs.(25) and(26), Zg, is the Rayleigh length associated
with low power lasers, i.e., powers much less than the non-
linear focusing powerRq;<1).

D. High power, short pulse (P<1,£=0)
In this limit, the laser pulse does not have an equilibrium.

power, long pulse limit, the beam has an equilibrium spotThe stability characteristics of laser pulses in plasma chan-

sizeRgq= Ry

nels can be obtained by perturbing Eg1) about the spot
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size Ref€)=Rn[1-Po(£)]¥, where R=Rg,+ R and
|SR|<Req. The equation foBR is
9?6RI9Z%+ 4Ry 4(1—Py) 6R

+48Ry 2(1—Py/2)d6RI9Z=—R, 36P, (27a

where
z
5P=P0(ex;{—s<GoZ+f 5Gd2’”—1), (27b
0

Go=2R, }(1—Py/2) andsG= — 2R, *PySR. Since there is

PROPAGATION OF FINITE LENGTH LASER PULSE. ..

no equilibrium for high power, short pulses propagating in a
plasma channel, both the laser power and spot size evolve
with propagation distance. The spatial evolution of the power

and spot size, among other factors, is given by[exz(1
—Py/2)Z/Ry].
V. LASER ENVELOPE MODULATION

A. Envelope oscillation

In the low power P<1), short pulse limifSec. IV B],
the perturbed envelope equation is

TR asrras R 6C TR o
972 657 SooEz 0 (289
with solution

6R~ Ry exp(— 2sZ—Z?/Z3)cog22), (28b)

where 6Ry=06R(Z=0),96R/9Z=0 at Z=0, and Z4
=wy/(24/6¢) is the phase mixing length normalizedZgq .

3619
() b(t,£) : amplitude
Eo
0
back &o=z— Vot front
(b) r(T,&) : spotsize
1
4 _unstable | _damped  /
T v
t\r"
v 2
&o
0
back Eo =z — Vot front

FIG. 1. lllustration of the physical mechanism for the laser en-
velope modulation. The amplitude is shown(@ and the spot size
in (b), as a function o&,=z—vyt, Wherevy, is the mean group
velocity. The solid curves correspond to the equilibrium. The
dashed curves show the amplitude and spot size for the case with a
group velocity larger tham 4, (1), and for the case with a group
velocity smaller than g (2).

The damping term is obtained from an extension of the QPAynd gb) show the amplitude and spot size of a finite pulse

(28b) it was assumed that the envelope peritidy is small
compared to the growth leng#y/(2|e|) and the phase mix-

ing length (7/6Y%)(14/\)Zg. The modulation amplitude is

proportional to
exd —8NEZ/(mn,l§) — 2% ZF]. (29

The modulation at the front of the puls&>*0) is always
damped, while in the backé&0) it initially grows but is

eventually damped due to frequency spread phase mixin%.r:

Overall damping of the modulation occurs foZ
> 4| |13\

B. Laser modulation mechanism

group velocityv 4. The solid curve shows the equilibrium
amplitude and spot size as a functionzefuv yot. If the spot
size is uniformly increased & >0) along the pulse, the
group velocity increases by the amouiuty. The amplitude

in front of the unperturbed pulse increaseth0), while

the amplitude in back of the unperturbed pulse decreases
(6b<0). Conservation of power indicates that the perturbed
spot size in back of the pulse is further increased sifice

= —ry0b/by>0, and decreased in front of the pulse since
—ro6b/by<<0. If, instead, initially the spot size were
uniformly decreased, the spot size at the back would be fur-
ther decreased while in the front it would increase. Hence the
perturbed spot size is damped in front of the pulse and is
unstable in the back. Substituting=z—uvt=2z—v4ot

The mechanism for the envelope modulation can be un= dvgt=£&— dvgt into b~byexp(-4£13), the rate of

derstood by noting the relationships between the group vechange  of

the perturbed amplitude isgéb/at

locity, spot size, and power of a pulse propagating in a~8b0§oa‘vgllg. Using or=—(rq/bg) b, we find 9dr/at
plasma channel. The group velocity of a pulse in a plasmas —8c&y(M/ 7r)28r /13, which agrees with the growth term

channel can be written as;=v g+ dvq, where the mean
group velocityv ¢ is given by Eq.(20), the perturbed group
velocity is 5vg=c()\/wro)25r/ro, and ér is the perturbed

in Eq. (29). Inherent to a finite laser pulse is a frequency
spread given bysw~c/l,. Hence the envelope modulation
frequency Q) ,=2c/Zg acquires a spreadQ,~ 0w/ w

spot size. To lowest order, conservation of power implies~Q.(\/27l,). This envelope frequency spread results in

Sb=—bhyér/ry, wheredb andb, are the perturbed and un-

phase mixing of the modulation in a distarg(normalized

perturbed laser field amplitudes, respectively. Figures 1 to Zg).
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Spot Size Spot Size
R(Z,£) R(Z.8)
z-3 : :
Z=15
2 3 \ 2 )
—_
2 \
1
0 ¢tosescsss v eas s
=0 o
back E/A front
-20 -10 10 20
FIG. 2. Plot of normalized spot su_z@(;g) as a function of¢ back g/ front
for a pulse of lengthH,=6\ propagating in free space. The four
curves correspond to normalized axial poidts O (lowest curve,
1, 2, and 3.

FIG. 4. Plot of spot siz® as a function of/\ after a propaga-

tion distance equal to 15 Rayleigh lengtt’s<(15). The solid(dot-
VI. NUMERICAL ILLUSTRATIONS ted) curve |nclude_5{neglect$ finite pulse length effects. Parameters
are the same as in Fig. 3.
The small phase mixing effect due to the frequency

spread associated with the short pulse is neglected in the In Figs. 3—6 the laser pulse parameters)arel xm, and

following numerical results. Figure 2 is a plot of the normal- w,/w<11,=20um (67 f9) and the peak power i®peax
ized spot sizeR(Z,¢) in Eq. (17d as a function of¢ for

=0.56P. . The total nonlinear focusing powex; is given by
various values oZ=0, 1, 2, and 3. In this figure the laser Eq. (4c), and consists of contributions from free and atomic
pulse propagates in vacuum and the pulse length=<HX. electrons. In all the figures there is an initial mismatch in the
In the absence of finite length effects the spot size would bepot size compared to the equilibrium spot size, iR,
independent o€. Figure 2 indicates that the tail of the pulse =R(0,0)=1 andR,,=1.15. Figure 8) shows the spot size
flares out more than the front of the pulse, leading to aR(Z,&) as a function oZ=2z/Zy and &\, with finite pulse
“trumpet” pulse shape.

/ ‘ T
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pot Size \%@ front Z &f%’&%ﬁ&é@t:ﬁ X
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FIG. 3. Surface plots of spot siZ@ as a function of¢/\ and
propagation distanc=z/Zg with (a) finite pulse length effects
(¢ #0) and(b) finite pulse length effects neglected£0). The

FIG. 5. Surface plots of laser pulse amplituslas a function of
parameters are =1 um, |;=20um, andPy.,=0.56P .

&\ and propagation distancé=2z/Zg with (a) finite pulse length

effects €#0) and (b) finite pulse length effects neglected (
=0). Parameters are the same as in Fig. 3.
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VII. CONCLUSIONS

The increasing use of ultrashort laser pulses in many ap-
plications requires that the paraxial wave equation be ex-
tended to include finite pulse length effects. We present the
guasiparaxial approximatiofQPA) to the wave equation.
The QPA is an extension of the usual paraxial approxima-
tion, and takes finite pulse length effects into account. A pair
of coupled envelope-power equations is derived for short la-
ser pulses propagating in vacuum, plasmas, and preformed
& back plasma channels. The model includes atomic electron and

relativistic effects. We find that finite length effects can sig-

nificantly modify the laser field. The results includi¢ an

analytical formulation of short laser pulsdg) a derivation

of a pair of coupled laser envelope-power equatidiis, a

laser envelope modulatioriiv) a demonstration of signifi-

(b) cant modification of nonlinear processes by finite pulse

length effects, andv) an analysis of short pulse propagation
dynamics in long plasma channels.

Power

P(Z,5)
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FIG. 6. Surface plots of laser pulse povwas a function of/A  partment of Energy.
and radial coordinate/r after a propagation distance equal to 15
Rayleigh lengths Z=15). In (a), finite pulse length effects are
included, and show enhanced focusing and decreased propagation APPENDIX: VALIDITY OF THE QUASIPARAXIAL
velocity, i.e., the peak of the pulse occurs for negative values of APPROXIMATION
In (b), finite pulse length effects are neglected, i£=0, while
nonlinear focusing effects are included. Parameters are the same as
in Fig. 3. eq

Q

front

The approximation, which leads to the simplified wave
uation in Eq(144a, requires that

length effects £+#0) included. For comparison, Fig.(i8

shows the same plot except in the absence of finite length

effects €=0). The laser envelope modulation is clearly | Eol>
seen in Fig. &), where the spot size oscillations at the front

of the pulse €>0) are damped and in the back<(0)

grow. Finite pulse effects not only result in an envelope

modulation but also significantly enhance nonlinear focuswhereE, ande are given by Eqs(13) and(14b). The short
ing. This is shown in Fig. 4, where the spot size with finite pulse approximation requires that E#1) be satisfied.

pulse length effectgsolid curvg approaches zero a/\

=—3 for Z=15. The spot size without finite length effects o

(dotted curve shows less than a 10% decrease=at0 for 1. Approximation in vacuum

Z=15. Figures 8) and §b) show the laser pulse amplitude  For pulse propagation in vacuum,= 1, the inequality in
b(Z,£) as a function ofZ and ¢\ with and without finite  Eq. (A1) can be rewritten, and the approximation is shown to
pulse length effects, respectively. As a result of the enhancelgle valid if
nonlinear focusing due to the finite pulse length, Fi¢p)5

shows a significant increase in the pulse amplitudeZ at

=15 compared to Fig.(®). Figure 6 shows the pulse power

as a function of¢/A and radial coordinate/r, at Z=15. |§|>ﬂ
Finite length effects in Fig. @) result in an increase in the

peak power as well as a distortion of the pulse compared to

Fig. 6(b), where finite length effects are absent. In Fi(p)6

finite length effects reduce the pulse propagation velocitywhere we have assuméd|<1. The finite pulse length ap-
i.e., the peak of the pulse occurs at negative values df  proximation in vacuum, used to replacgE,/d¢ with
Fig. &0b), nonlinear focusing effects are included while finite — (w/c)e(€)E, in Eq. (143, is well satisfied everywhere
pulse length effects are neglecteds 0. Fore =0 the pulse except within a small function of a wavelength of the pulse’s
velocity isc, and nonlinear focusing is substantially reduced.center.

: (A1)

( N c &)E
e — —
ﬂpwﬂ§ 0

r/ry)?
L0 |

1+i(Z+e)| 1+i(Z+e)|’ (A2)
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2. Approximation in guiding channel le|>(clwny)|del3¢|ZIRG, which for a pulse having a

To determine the validity of the short pulse approximationGaussian longitudinal profile is
in a guiding channel we consider the low power, short pulse
limit of Eq. (21), i.e., limit (b) in Sec. IV. The field in Eq. 1
(13) for the equilibrium solution given in Eq$23) is |g)> — o
Tp

- R,%Z. (A4)

Eeq=bo(&)exd —eZ/R5—ir%(rgRm?].  (A3)

SubstitutingE for Eq in Eq. (Al) yields the condition for The QPA approximation is not valid for long propagation
the QPA to be valid. The approximation is valid provided distances.
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